ABSTRACT: Despite the ever‐growing demand for Li metals as next‐generation Li battery electrodes, little attention has been paid to their oxidation stability, which must be achieved for practical applications. Here, a new class of printable solid electrolyte interphase mimic (pSEI) for antioxidative Li metal electrodes is presented. The pSEI (≈1 µm) is directly fabricated on a thin Li metal electrode (25 µm) by processing solvent‐free, UV polymerization‐assisted printing, exhibiting its manufacturing simplicity and scalability. The pSEI is rationally designed to mimic a typical SEI comprising organic and inorganic components, in which ethoxylated trimethylolpropane triacrylate and diallyldimethylammonium bis(trifluoromethanesulfonyl)imide are introduced as an organic mimic (acting as a moisture‐repellent structural framework) and inorganic mimic (allowing facile Li‐ion transport/high Li+ transference number), respectively. Driven by the chemical/architectural uniqueness, the pSEI enables the thin Li metal electrode to show exceptional antioxidation stability and reliable full cell performance after exposure to humid environments.
논문정보: Advanced Functional Materials, 30, 200792 (2020)
Published: 30 April 2020
DOI: 10.1002/adfm.20200792